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SUMMARY

A typical low-thrust Mars orbiter mission using the Snap-8 power-

generating system has been studied from a guidance viewpoint. The

mission trajectory was divided into the three characteristic phases,

namely, the outward escape spiral, the heliocentric transfer, and the

inward capture spiral. The sensitivity of the final trajectory state

(velocity, position, and mass) due to errors in the initial trajectory

state and to thrust-vector errors was determined for each phase of the

mission. The analysis and numerical solutions are based on the methods

of linear perturbations and adjoint functions.

During the escape-spiral phase, any of the following minimum errors,

if left uncorrected, is sufficient to cause the escape direction to be

180 ° out of phase: a O.l-percent error in either initial orbital alti-

tude or initial vehicle mass, a 0.l-percent error in the thrust magnitude

acting over the entire trajectory, or a 2.8 ° error in the thrust angle

acting over the entire trajectory.

During the heliocentric transfer, final position and velocity errors

of the order of several hundred thousand kilometers and lO meters per

second will result from either an escape-direction error of 1/2 °, a

thrust-magnitude error of 1 percent, or a thrust-angle error of 1/2 °.

During the capture-spiral phase, if the initial velocity vector were

in error by only 1 meter per second and 1 milliradian, and if the nominal

thrust program were followed exactly, the vehicle would spiral down into
the Martian surface.

In general, low-thrust trajectories are highly sensitive to errors.

0pen-loop trajectory control is thus completely out of the question_ that

is, repetitive trajectory determination and corrective guidance maneuvers

are required to ensure a successful mission.



INTRODUCTION

In the past several years_ theoretical and experimental analyses
have shownthat electric rocket systems are practical and offer high
performance in advanced space missions. First-generation spacecraft
flights are scheduled to begin around 1965 with an ion engine powered
by the Snap-8 nuclear turboelectric system currently under development.
A feasible mission that has been proposed for the 60-kilowatt version
of Snap-8 is a scientifically instrumented Mars orbiter. Such a mission
would begin in a low-altitude Earth-satellite orbit and end in a similar
orbit about Mars. Since the vehicle would penetrate a large portion of
the near-Martian space as it slowly transverses the capture-spiral tra-
jectory, an accurate survey of radiation and surface conditions maybe
obtained and transmitted back to Earth.

The question of how accurately the vehicle can be guided to its
given target is of great consequenceto the success of the mission. As
yet, little attention has been given to the problem of low-thrust guid-
ance in the presence of randomor systematic perturbations arising from
such error sources as thrust-vector control_ navigational measurements,
and an approximate system model. In a preliminary analysis of this
subject (ref. i), linear perturbation theory and the method of adjoint
functions were used to derive the fundamental guidance equation for
low-thrust trajectories. This equation provides a meansof studying
the effect of error perturbations and corrective guidance perturbations.
The specific problem treated in reference i is an error analysis of the
heliocentric-transfer trajectory between Earth and Mars covering a wide
range of propulsion characteristics and transfer times. This report is
an investigation of the guidance problem for a typical Mars orbiter
mission considering, in turn, the escape-spiral phase, the heliocentric-
transfer phase, and the capture-spiral phase. The purpose of this in-
vestigation is to determine the sensitivity of the final trajectory state
for each phase to initial trajectory state errors and thrust vector
errors. It should be emphasizedthat this study is a fixed-time anal-
ysis; that is, perturbations refer to the difference between the actual
and reference trajectories at a particular instant of time. The choice
of time as the independent variable is computationally convenient and
is a good criterion of comparison for the problem at hand.
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scalar product of vectors



Subscripts:

c beginning of coast period

des design thrust level

E Earth

f final value

ij general indexes

M Mars

n values at t n - beginning of control interval

o initial value

Superscripts:

T transpose of matrix

' second-order perturbation

time derivative

- vector

ANALYSIS

Vehicle and Mission Characteristics

In this report an investigation of the trajectory sensitivity and
control problem for a particular Earth-Mars instrumented space probe
utilizing the Snap-8 electric propulsion system is presented. Rather
than proceeding directly to the analysis, it is appropriate here to
present the propulsion characteristics of the vehicle that have been
assumedand to discuss briefly the mission and trajectory characteristics.

Vehicle-propulsion characteristics (unpublished NASA data). - The

Snap-8 vehicle will be placed into a nearly circular, low-altitude

satellite orbit utilizing a multistaged chemical booster. Typically_

an initial gross weight of 4080 kilograms (9000 ib) is placed in a

927-kilometer (500-naut.-mile) orbit. The design electric power and

specific powerplant mass are 60 kilowatts and 22.7 kilograms per kilo-

watt, respectively_ and the resulting powerplant - initial-gross-weight
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ratio is 1/3. With a propellant utilization of 90 percent and a power
efficiency of 76.2 percent assumed, a design specific impulse of 3600
seconds is obtained. The available thrust force is 2.32 newtons
(0.52@ib)_ and the propellant massrate is 5.68 kilograms per day.

Mission characteristics. - The mission under consideration is a

415.4-day_ one-way trip to Mars beginning in a 927-kilometer Earth-

satellite orbit and terminating in a similar satellite orbit about Mars.

Figure i is a schematic illustration of the overall interplanetary-

transfer maneuver. It is convenient to discuss the mission in terms of

three distinct phases_ namely, the escape spiral, the heliocentric trans-

fer_ and the capture spiral.

(i) During the first 139 days of the trip the vehicle increases its

energy relative to Earth according to a continuous-power tangential-

thrust program. Solar gravitational effects are neglected during this

phase.

(2) At the hyperbolic-escape condition, the gravitational effect of

the Earth is neglected, and the vehicle initiates a 223-day heliocentric

transfer employing an optimum constant-thrust program. The power-coast-

power sequence is 27.7_ 160, 35.3 days_ respectively. The heliocentric-

transfer angle is 159 °.

(3) At 362 days the vehicle is in the vicinity of Mars and initiates

the energy-decreasing capture spiral_ again employing a continuous-power-

tangential-thrust program. After 53.4 days_ the 927-ki!ometer satellite

orbit has been established. Solar gravitational effects are neglected

during this phase.

The overall trajectory has been pieced together from a series of

two-body solutions in order to simplify the analysis. This procedure

has been commonly used by investigators of the low-thrust interplanetary

mission. In most cases_ the approach taken is to terminate the escape

spiral when parabolic escape energy has been sttained. After this, the

vehicle is assumed to be moving in the Earth's orbit with Earth's orbital

velocity relative to the sun, and the Earth's gravitational affect is

then neglected. A similar procedure is used at Mars. Frequently_ the

parabolic energy condition occurs at a position well within the planet's

sphere of influence. The essential difference in the approach taken in

this analysis is an extension of the esaape- and capture-spiral phases

past the parabolic energy condition. Transformation to or from the

heliocentric system is arbitrarily made at a point where the solar and

the planetary gravitational effects are approximately equal. The main

reason for extension of the spiral phases is that in the vicinity of

the hyperbolic escape or capture condition the motion of the vehicle is

approximately along the asymptote of a hyperbola_ which is a useful

target criterion for guidance purposes.



Figure 2 describes the escape-spiral trajectory in detail, where
the last of 500 revolutions about Earth is plotted. Parabolic escape
energy is reached at a distance of about i00 Earth radii and at a time
of 125.5 days after launch. At a distance of 298 Earth radii, the escape
phase is terminated, and, at this point, the relative velocity of the
vehicle is 1577 meters per second. The direction of the velocity vector
was arbitrarily chosen to be parallel to Earth's velocity. The perpen-
dicular distance from the center of the Earth to the hyperbolic asymptote
is referred to as the asymptotic displacement and, in this case, is
0.675×109 meters.

As previously mentioned_ the heliocentric-transfer trajectory is
of the optimum constant-thrust type_ that is_ the thrust program employed
was one that minimized the propellant expenditure subject to the follow-
ing constraints: (i) The thrust must be equal to its maximumdesign
value or equal to zero, and (2) the transfer is to take place in a spec-
ified time_ namely, 223 days. Details of the optimization procedure
are fully presented in reference 2.

A plot of the capture-spiral trajectory is shownin figure 3. Ini-
tially, the vehicle's relative position and velocity are 4i8 Mars radii
and IA54 meters per second, respectively. The direction of relative
velocity is parallel but opposite to Mars' orbital velocity. Thus, the
planet is catching up with the vehicle. The asymptote of the capture
hyperbola is displaced by 0.209><109meters. With the use of reverse
tangential thrust, a 927-kilometer satellite orbit is achieved during
the i09 th spiral turn.

Trajectory Sensitivity Analysis

The motion of the vehicle during each phase of the mission is de-
scribed by a set of nonlinear differential equations. Consider that a
solution of such a set corresponding to a specified thrust program and
satisfying prescribed boundary conditions has been obtained and is
termed the reference solution. If the major assumption is madethat
perturbations (e.g., guidance errors) are sufficiently small so that
the actual vehicle trajectory does not vary significantly from the
reference trajectory, it is possible to study these variations and the
required corrective maneuversby linear perturbation techniques. The
perturbed differential equations of motion represent a linear system with
time-varying coefficients, which are determined from the knownreference
trajectory. The general solution of the perturbed equations is best
facilitated by the method of adjoint functions as suggested in refer-
ence 3. Application of the adjoint method to various trajectory sensi-
tivity and control problems is found extensively throughout the litera-
ture, for example, references i_ 4, and 5.



E%uations of motion. - During each phase of the mission, the vehicle

is assumed to travel in a vacuum under the influence of an inverse-square

central gravitational field in addition to its own thrust acceleration.

A two-dimensional geometry is used, and the vehicle motion is described

in a rotating polar coordinate system centered at the appropriate central

body. With reference to figure 4_ the differential equations of motion

to be satisfied along the flight path are given as

: ra_ - GM + _ sin _ (i)
r 2 m

_5 -2u_ + F: -- cos (2)
r lqn

÷ : u (3)

:

: _ E (s)
c

Differentiation with respect to the independent variable time is denoted

by a superscribed dot. The state variables of interest are radial ve-

locity u, angular velocity _, radial position r, angular position _,

and mass m. The propulsion or control variables are the thrust magnitude

F and the thrust angle _, which is measured with respect to the local

horizontal (circumferential) direction. The effective jet velocity c

is equal to the product of specific impulse and a conversion factor and

is considered constant in this analysis.

The fact that the angular position _ does not appear in the non-

linear equations of motion is very significant in that large variations

in _ may be admitted without invalidating the linear perturbation

analysis. The possibility of very large variations in this quantity,

relative to 2_ radians, during the escape-spiral phase is evident_ since

the vehicle makes several hundred revolutions around Earth in the process

of escaping.

Fundamental _uidance equation. - The derivation of the linearized

equations of motion and their solution by adjoint methods are reported

in reference i. The development needed for the present study is presented

in appendix A. In the following discussion, the symbol 5 is used to

represent small variations from reference quantities, that is, by def-

inition

5x(t) : x(t) - x*(t)



where x is any state or control variable, and the asterisk denotes
the reference value.

The fundamental guidance equation expresses the variation in state
variables at the final reference time tf in terms of the variation in
state variables at sometime t along the path and in terms of the
integrated effect of thrust-vector variations during the interval
(t, tf). This equation is written with the use of matrix notation for
conciseness, as

r_l rBu(t q tf

f 1= A(t) Isr(t)l + dt
P f/ I  (t)l
L md L m(t)J

where A is a S by S matrix of sensitivity coefficients and W

S by 2 matrix of thrust sensitivity or weighting functions• By

definition

A = •

h

_ii _12

X21

a

his

XZS

X55

w 1

; W : .

.w$ _

"Wll Wl_

w51 w52

(G)

is a

(7)

The _lements _ and w.. are determined from a set of adjoint dif-
±d - IJ --

ferential equations discusse_ in the next section.

The fundamental guidance equation has two basic interpretations.

First, the sensitivity of final conditions due to a variety of error

sources may be determined, and the analyst thereby provided with in-

formation regarding the navigational and control-accuracy requirements.

For example, if the final variations have some prescribed tolerance

level, (_F, _) may be regarded as constant bias or random variations

acting over the path, and their tolerance level may be computed• Also,

if at time t the variations Suj %_, and so forth are measured, the

uncertainty in these variations due to instrumentation errors causes

uncertainty in the knowledge of final conditions that may be determined

from equation (6). Thus_ something might be inferred about the measure-

ment accuracy requirements. The second interpretation of the equation

has to do with the formulation of an active guidance technique• With

the assumption that corrective maneuvers are required to null some or

all final variations, which have been determined by measurements _u(t),



$_(t)_ and so forth_ the necessary corrective-thrust program is implic-
itly contained in the integral terms of equation (6). The form of
(_F_ SB) will depend on the particular control criteria and constraints
imposed.

In this report the major concern in the evaluation of the effect of
errors in initial conditions and thrust vector on the final-state vari-
ables, that is_ the evaluation of the right side of equation (6) when
t = t o. For example_ if the error in radial velocity at tf is of
interest equation (6) yields

5uf = (_llSu + h125_ + _i3_r + _l%$q_ + hlSSm)to

÷
t_o tf (wll_F + Wl28_)dt

From the form of this equation_ the sensitiviby coefficients may be

interpreted as partial derivatives; for example,

Suf

XII (to) m u_ °

Also_ if bF and 8_ are constant along the path, the following partial

derivatives could be defined as

_uf _ t_o tf
F_= Wll dt

_ /tfT= w!2 dt

_o

The extension of these definitions to the remaining variables follows

directly.

Ad$oint equations. - The sensitivity coefficients _ij(t) are deter-

mined from the solution of the following adjoint differential equations

(see appendix A):

_il = (_) Ri2 - hi3
(s)
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hi2 = - (2r_)hil + _]hiZ - hi4
k r/

(9)

\ r3 r2m
(io)

hi4 = 0 (li)

_i5 --- (F sin _)_il + (Fc°s-_)_i2m2 rm 2
(12)

The time-varying coefficients in parenthesis are known from the particular

reference trajectory of interest. These equations were integrated

backward in time from tf. The initial conditions specified at tf have
the form

_ii(tf) : i; hij(tf) = 0 j _ i

that is,

A(tf) = l(unit matrix) (13)

The sensitivity coefficients and _ are continuous functions of

time even if a discontinuity in F is admitted, as it is during nominal

coasting periods (see ref. 2). From equations (ii) and (12) it is noted

that _i4 is a constant and that _i5 is constant during coasting

periods (F = 0). When boundary conditions are specified as in equa-

tion (13), the fourth column and the fifth row of the matrix A are

time invariant and maybe given directly without numerical integration:

(_14, _24, _34, h44, _54) = (0,0,0,i,0)]

(_5i, _sz, _53, _5¢, _55) (0,0,o,0,I
(14)

The elements of the matrix W are_ from appendix A_

hi I hi2 hi5
= -- sin _ + _ cos _ - -- (15)

wil m rm c

F(h hi2 sin _)wi2 = m il cos _ - --_- (is)
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On substitution from the second of equations (14), w51
plify to

and w52 sim-

i
: -c'-:%2 : o (17)W_l

The thrust-angle weighting function wi2 is continuous only during the

nominal powered periods and is zero during the nominal coast period

(F = 0). A discontinuity exists at the initiation and the termination

of the coast period. This result is as it should be, since thrust-angle

variations have no physical meaning when thrust is shut off.

Nonlinear thrust-vector perturbations. - In the derivation of the

fundamental guidance equation (eq. (6)), it is assumed herein that thrust-

vector perturbations are sufficiently small so that only first-order or

linear variations need be considered. If_ however, large variations in

thrust magnitude or direction are allowed, the linear form of the inte-

grand in equation (8) must be modified; that is,

i = i,. .,5

where ZkF and Z_3 may be considered large variations. The need for

such modification arises when consideration is made of the problem of

guidance maneuvers (corrective thrust programs). For example, if the

guidance maneuver requires that thrust be cut off for a specified time

during the nominal powered period or that thrust be turned on during

a nominal coast period, than ZkF = _F, which is certainly not small.

Another reason for deriving the exact fi functions is that a check on

the conclusions drawn from the linear-sensitivity analysis is available

when the first-order sensitivities appear to be negligible.

The perturbation analysis (see appendix A) involves two essentially

unrelated types of linearization, that is, linearization of the state

variables and linearization of the control variables. This separation

is evident in the results of equation (6). The validity of the trajectory

perturbation solution, however, depends only on the validity of the

linearization of state variables. Note that the adjoint solution A(t)

is independent of control-variable linearizations. Consequently, as

long as large thrust-vector perturbations do not result in large trajec-

tory perturbations, it is necessary to modify only the integrand terms

in equation (6). From appendix A the result is

t tf ]dt
5_(tf) = A(t)5_(t) + [fi (i8)
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where

fi : _i_i[(F +_)sin(_ + s_) - F sin _]
m

+ __i__[(F +_)cos(_ + m_) - F cos _]
rm

_is [(F +_) F]
C

After expansion of the trigonometric functions and with the use of

equations (iS) and (]6), the alternative form is

fi = il + AF cos f_8 + Z_F sin _8 -
c/

/

(19)

When f_F and £_3 are small, AF_ _F; sin A_ _ _ and cos _ _ i.

Equation (19) thus degenerates into the approximate linear form derived

previously:

fi _ WilbF + wi2b6

In the previous section it is noted that wi2 is discontinuous

at the beginning and at the end of a coast period (F = O) and is zero

during this period. The quantity wi2/F , which appears in equation (19)_

however, is always continuous and, in general, is nonzero_ as can be
seen from equation (16).

Several special cases of equation (19), used later in this report
are as follows:

F = O; AF = Fdes; f48 arbitrary

fi = Fdes il + -7-] c°s £48

L_8 = O; Z_F arbitrary

(2o)

fi = Wil ZXF (£z)

F = F des, fkF = bF << F; A_ = 6_, small but second-order effects

significant; sin A_ _ 6_; cos A_ - i _ - _ _82
2
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Fdes{fi = Wil_F + wi2_ - -2--_wiz + _2
(22)

RESULTS AND DISCUSSION

The overall low-thrust trajectory for the $iS.$-day Mars orbiter

mission has been pieced together from a series of two-body solutions.

The equations needed to calculate the reference trajectories were pro-

gra_ed for an IBM 704 digital computer. Numerical integration was

performed by the Runge-Kutta technique with an automatic step-size con-
trol to limit truncation error. The computer program was developed for

the study presented in reference 2_ and only minor modifications were

required to adapt it to this investigation. Basically_ this modification

involved increasing the integration loop by the addition of the adjoint

equations (8) to (12).

In the following sections_ each phase of the mission is considered

separately_ and the results show the sensitivity of the final trajectory

state due to errors in the initial trajectory state and thrust-magnitude

and -direction errors. Two examples of simple corrective guidance are

presented.

Trajectory Sensitivity - Escape-Spiral Phase

Reference trajectory. - Characteristic parameters of the escape-

spiral trajectory are given in figure S. The thrust angle _, which

corresponds to the tangential-thrust program, is plotted in figure S(a).

Thrust direction is seen to be within 2° of the horizontal throughout

the first i00 days_ and thus a circumferential-thrust program would

result in approximately the same trajectory up to this point as the

tangential program. Aside from the fact that tangential thrust is very
efficient in terms of propellant expenditure_ trajectory control is

enhanced, since the local vertical (local horizontal) may be easily

sensed. Past the knee of the curve_ _ increases at an average of

about S° per day.

Radial velocity is shown as a function of time in figure S(b), and

the similarity to the thrust-angle program is noted. The vehicle's orbit

is essentially circular up to i00 days at which point the eccentricity

is only 0.028. A characteristic of the function u(t)_ which is entirely

masked out in figure S(b)_ is its oscillatory nature over the flat region

of the curve. A close examination of the digital-computer results, in

a region where output is called for at every integrating step, shows that

u oscillates with an increasing period and decreasing amplitude as time

increases. The period is approximately equal to the orbital period
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during a given revolution. Initially, the amplitude of oscillation is
of the order of several meters per second. At t = 25 days, the ampli-
tude has decayed to a small fraction of i meter per second. A corre-
sponding oscillation is also exhibited by the thrust angle and the
eccentricity.

The angular velocity _ decreases with time by almost four decades,
as shownby figure 5(c). An approximation of the average orbital period
maybe madeat any time by 2_/_. For example, at t = IS days i rev-
olution is madein about 0.i day, while at t = 82 days one revolution
requires about i day. Figures S(d) and (e) showthe time histories of
radial and angular positions, respectively.

Initial-condition variations. - With reference to equation (6), the

effect of errors in velocity, position_ and mass at t = to = 0 on these

same quantities at tf = 139 days is given by A(to). The elements of

this matrix have been obtained from the adjoint-equation solution and

are given as

5uf

5_f

A(to) = 5rf

5_f

5mr

5u o 5%

7.39Xi0 -4 7.20><106

5.69XI0 -13 _2.01><10 -3

l.SiXlO 2 1.44)<1013

-1.23Xi07-4.41XlO -4

0 0 0

Bro B9 o Bmo

i .99><10-S 0 -2.13

-5.43×10 -13 0 5.19XlO -I0

4. OOXIO 3 0 -3.80><106

-3.41><10 -3 1 0.768

0 1

(23)

Consider, for example, a variation in the initial-circular-orbit

altitude of i0 kilometers, that is, 5r o = 104 meters. Assume also that

5Uo = B_o = Bm o = O. Since

the variation in _o is

5_0o = _ _3 _ 5r O = _ 3 e_o Br O = _ 2.08><10-6 radian/sec

2Vr-- _ 2 ro
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From the second and third columns of A(t o) the following are obtained:

5uf = 5.00 m/sec

5_f = -1.25XI0 -9 radian/sec

5rf = 1.00×107 m

5_f = -8.%9 m -2.21 radians _ -127 °

The final errors 5uf, 5_of, and 5rf are each of the order of 1/2 percent.

If there were no error in the angular position, a transformation to

heliocentric coordinates would show an extremely small perturbation on

the initial heliocentric conditions. This is not the case, however,

since _f is the parameter that is related to a heliocentric reference

direction and is in error by -127 ° . The perturbed escape trajectory

may be visualized by a 127 ° clockwise rotation of the reference trajectory

in figure 2. Qualitatively, the result is a very significant error in
heliocentric coordinates.

The preceding example has served to focus attention on the extreme

sensitivity of final angular position relative to the sensitivity of the

other state variables. There is, however, an essential difference in

the nature of the sensitivities. That is, the magnitudes of 5uf, 5_f,

and 5rf increase proportionally with initial-condition errors, whereas

the principal magnitude of 5@f varies between 0 and _ in a cyclical,

triangular fashzon. As an example, consider each initial-condition

error independently and compute the error magnitudes that cause _f to

be _ radians out of phase. From the fourth row of the m_trix A(to)

if 6_f = ± (2n + i)_, where n = O, i, 2, _

5Uo : $ 5_f - $ (2n + I)(7.10XIO 5) m/sec
_. 41XIO -4

5_o = _ 59f = ¥ (2n + 1)(2 SSXIO -7) radian/sec
1.25×107

_r O :
55f

5.41XlO- 3
: ¥ (2n + 1)(9.21Xi02) m

_gf
$_o = ± _ : ± (2n + i)_ radians

i

5q_f
5mo = ± _= ± (2n + 1)(4.09) k.g0.768
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The minimumerrors are found when n = O. From the previous results,
it maybe concluded that 5Uo is several orders of magnitude greater
than any reasonable error that maybe expected. In contrast, a O.O_-
percent error in coo or a O.l-percent error in either the initial orbital
altitude or _ is sufficient, if left uncorrected_ to reverse the di-
rection of the escape asymptote.

Thrust-vector variations. - Consider next the sensitivity of velocity

and position co_onents at the nominal escape condition to variations

in thrust magnitude and direction. This information is expressed by the

integral terms in equation (6), where the elements of the weighting

matrix W are given by equations (18) and (i_) and are plotted against

time in figure 6. Each weighting function, except w41 , exhibits an

oscillatory characteristic the amplitude and period of which increase

with time. As in the case of the radial-velocity characteristic, the

period of oscillation approximately coincides with the orbit rotational

period of the vehicle. In figure 6, only the last cycle of the weighting

functions is shown; however, the envelope of oscillation is plotted.

Qualitatively, the weighting functions illustrate the relative sen-

sitivity bo thrust-vector errors during any two arbitrary time intervals.

Figures 6(b), (d), (f), and (h) show that final velocity and position

components are relatively insensitive to first-order thrust-angle errors

during the first half of the escape phase, whereas fi_.res 6(a)_ (c)_ and

(e) show a significant and essentially constant sensitivity to thrust-

magnitude errors during this same interval. In particular, figure 6(g)

illustrates a result that could easily have been predicted, namely, that

_f is most sensitive to 5F occurring during the early tightly wound

spir_is and that the sensitivity is essentially zero during the last

spiral turn (t > 120 days).

A convenient quantitative measure of the sensitivity to thrust errors

is obtained by considering 6F and _ to be constant; thus, the time

integrals of the weighting functions yield the desired sensitivity. The

results are presented in the following matrix form, where 5F and 6_

are measured in newtons and radians, respectively:

6F B_

wij d =

['to

buf

_f

Sr
f

5q_f

3.73Xi03 11.7

J
-9.11XlO -7 -2.77×10 -7

6.68><109 7.32><107

-1.35X103 -2.92
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Consider the effects of a thrust-magnitude error first. Since an

appreciation for the serious consequences of a large error in _f has

been gained, the sequence of _F values, which causes _f to be

radians out of phase, are computed. From equation (24)

_F = + (2n + l)z = ± (Sn + 1)(2.33×10 -3 ) newton n = 0,!,2,.
1.5S×IO S

The minimum value of SF required is thus 2.33XI0 -3 newton, or a 0.1-

percent error. Since it is unlikely that such accurate thrust control

is possible, it must be concluded that the requirement of guided flight

is of major importance for low-thrust missions.

The effects of a ±O.l-percent error in F on the velocity and

radial-position components at tf are

_uf : ± (3.73×I03)(2.33XI0 -S) : ±8.70 m/sec

_f = ± (-9.11XlO-7)(2.S3XlO -s) = ¥2.12XA0 -9 radian/sec

_rf : ± (s.6s×log)(2.S3×lO -s) : ±l.saxlo 7 m

Each of these final variations when divided by its respective reference

quantity represents an error of less than i percent_ therefore, the

resultant perturbation on the heliocentric trajectory is due slmost

entirely to $9f = _.

For discussion of the effects of a thrust-angle error, an error

of ±i0 milliradians, or about i/_ °, is assumed as a typical order of

magnitude. The final velocity and position errors that result are then

given by equation (24) as

5uf : ±0.117 m/sec

b_f = ¥2.77Xi0 -9 radian/sec

5rf = ±7.38X105 m

59f : ¥0.0292 radian = _1.67 °

which are all first-order effects. The error magnitudes due to the first-

order variation of _ appear to be quite small; however, before a con-

clusion can be drawn the effects of second-order variations of _ must

be computed. From equation (22),
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 x (tf)  xi(tf) due to =
Fdes /to tf
2 5_2 il

In this study, Fdes/2 is of the order of unity. Also, computer results

show that hi5/c is small compared with Wil for all values of i.

Thus, the second-order effects are very well approximated by the integrals

of Wil , which are given in the first column of the matrix equation (24),

multiplied by 5_ 2 = 10-4:

5u_ = -0.373 m/see

_ = 9.11><10 -11 radian/sec

5r_ = -6.68><105 m

5_ = 0.155 radian = 7.74 °

A comparison of the first- and second-order effects shows that second-

order effects are of the same magnitude or greater except in the case

of angular-velocity errors. The total errors in velocity and radial-

position components are quite small. The total angular-position error

is less than i0 °. if_ however_ _@ were increased to 2.8 °, the final

angular-position error would increase to about 180 °.

Trajectory Sensitivity - Heliocentric-Transfer Phase

Reference traSectory. - The time required to transfer between plan-

etary orbits was chosen as 223 days, and the trajectory was optimized

to minimize the propellant expenditure. The constraint imposed here

was that the thrust must be equal either to the design value or to zero.

Characteristic variables of the reference trajectory are plotted in fig-

ure 7 where the time scale chosen has been reinitialized to zero. The

optimum-thrust-angle program is shown in figure 7(a). Thrust direction

is outward with an average rate of change of 0.86 ° per day during the

first powered period and inward with an average rate of change of 0.$6 °

per day during the second powered period. Velocity and position time

histories are shown in figures 7(b) to (e).

Initial-condition variations. - Digital-computer solutions of the

adjoint equations (S) to (12), which correspond to the boundary conditions
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A(tf) = unit matrix_ are plotted as functions of time in figure 8. The
effects of initial-condition variations on final conditions are given
by A(to):

_uf

A(to) = 5rf

_f

SUo $COo Sro _9o Smo

-0.$66 2.6SXlO II 6.%6><10 -7 0

-i. 8AXlO "12 -S. %8 -S. 07XlO -18

2.2C_<I06 4.$7×I018 10.9

-i. 02×10 -% -3. llXlO 7 -8. %4×i0 -ll

0 0 0

-0.149

0 8.07><10 -12

0 -1.27XI07

i i. OOXlO- _

0 I

(25)

8_o = 2.47×10 -11 radian/sec

6r o = -1.769<107 m

6_o = %.SOXI0 -S radian

6mo= 0

Then from equation (2S) the final-condition errors will be

_uf = 0.770 m/sec

6_f = 8.69×10 -11 radian/sec

_rf = -1.16><108 m

6u o = -15.8 m/sec

Variations in initial velocity_ position_ and mass will be due to errors

incurred during the escape-spiral phase. Expressions are derived in

appendix B that relate the two sets of errors. Suppose_ for example,

at the termination of the escape phase that the angular position is in

error by only i0 milliradians_ while all other errors are zero. With

the use of equations (B6), (B7), (BI2)_ and (BI_), the initial-

heliocentric-velocity and -position errors are found to be
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$_f = 2.39XI0-3 radian; rf_q0f = 5.43×IOS m

5mr = 0

With reference to figure _, the resultant errors showthat at the nominal
final tim@the vehicle is both below and ahead of _ts nominal position,
and its motion relative to Mars is essentially parallel to the nominal
capture trajectory. Hence, the incoming asymptotic displacement is in
error by some1.16×108 meters. The requirement for midcourse corrective
guidance to compensatefor the escape errors is evident.

Thrust-vector variations_ - The elements of the matrix W are

plotted as functions of time in figure 9. Recall that the nominal coast-

ing period extends over the interval 2'/.7 < t < 187.7 days. Since it

is reasonable to assume that no thrust errors w_ll occur during this

interval_ the weighting functions are of interest here only during the

nominal powered periods. Th_ significant result ill_strated by figure 9

_s that the final velocity and position components are relatively more

se_sitiJe to thrust-vector errors that occur during the first powered

period. In particular, the radial-position perturbation due to either

_F or 5_ is relatively IS times greater during the first powered

period, while the angular-position perturbation due to _F is relatively

2S times greater.

The time integrals of the weighting functions over the powered

regions of flight have been evaluated as

5F 66

6uf

wi j d =
wered 6rf

periods
6mf

211 -604

-l.14XlO -8 2.48Xi0 -8

1.80)<10 I0 -2.1S×I0 I0

-0.142 0.0584:
L

(26)

As an example_ the velocity and position perturbations resulting from a

1-percent error in thrust magnitude or a IO-milliradian error in thrust

angle are
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SF = 2.52Xi0 -2 new,ton

_uf = 4.90 m/sec

$@f = -2.6¢×i0 -I0 radian/sec

Srf = 4.17XI08 m

_f = -3.29×10 -3 radian

_ = 10 -2 radian

Suf = -6.04 m/sec

$_f = 2.4S×I0 -I0 radian/sec

Srf = -2.1SXI0 S m

$9f = 0.38¢×10 -3 radian

The resultant errors and, in particular_ the position errors are

of sufficient magnitude to require midcourse guidance corrections.

Trajectory Sensitivity - Capture-Spiral Phase

Reference trajectory. - Variables that describe the capture-spiral

trajectory are plotted as a function of time in figure i0. The thrust

angle _, corresponding to the energy-decreasing tangential-thrust

program, is shown in figure lO(a) in which _ is shown as a second

quadrant angle, since the thrust vector in this case is parallel but

opposite to velocity vector. As in the case of the escape-spiral

trajectory, the thrust direction is essentially circumferentisal over a

large region. In this region, t _ 2S days, the vehicle travels in a

nearly circular orbit with a decreasing semimajor axis. These results

may readily be inferred from the radial-velocity and -position curves

sheen in figures lO(b) and (d). Again, as in the case of the escape

spiral, a characteristic of the function u(t), which is entirely masked

out in figure 10(b), is its oscillatory nature over the flat region of

the curve. The period and amplitude of oscillation decrease and increase,

respectively, with time, although the largest amplitude is quite small.

Variational _arameters of final satellite orbit. - It may be more

ill_iuating to consider the sensitivity of the final satellite orbit

about Mars in terms of orbital parameters such as semilatus rectum p,

s_mimajor axis a, eccentricity e, perigee rp, or apogee r a. If the

orbital orientation is not of interest, any two of these parameters will

define the orbit. The parameters af and pf may be expressed in

terms of the radial-position and -velocity components as

af=
i

2 + (r f)2

rf GMM
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The eccentricity_ perigee, and apogee are given as

Pf
e2 =I - a_

rp,f = af(l - el)

ra, f = af(l + el)

Whenthe reference orbit is circular, the following special relations
Occur:

uf = ef = 0

af = pf = rp,f = ra, f = rf

Vf = rfa)f = \rf /

Expansion of af and pf in a Taylor series keeping only first- and

second-order terms and utilization of the previous special relations
yields

f2rf_ /rf_u2 /Srf_ 2 I_f)Aaf = k_--fa_f + 4$rf + kV2? f + k_)5_f + br 2

/2rf\

Apf = k_--_-f_Sa)f + 45rf

+ I_l_f5 rf

(2v)

Variations in eccentricity_ perigee, and apogee may then be calculated
from

Aaf - Apf
Ae 2 = (29)

f rf + Aaf

Zkrp,f = Aaf - (rf Aef + Aaf Aef) (3o)

Ara, f = Aaf + (rf Aef + Aaf Aef) (31)



23

Note that, even for very small variations in velocity and position, equa-
tions (29) to (SI) are essentially nonlinear when expressed in terms of
these variations. This result is due to the fact that the final reference
orbit is circular.

Initial-condition variations. - Solution of the adjoint equations

for the capture-spiral trajectory yields the following A(to) matrix:

5uf

A(to) = 5rf

5_f

_m_

5Uo 5ab Bro 5_o

-24.2 9.87×1011 S .37×10 -5 0

-2.02><10 .-4 2.01Xl05 -i. iGXlO "I0

5.73XlO 5 -S. 77XlO 14 O. 311

0 0 0

0

0

i

0

_m o

7.16

4.87Xi0 -S

-i. 39XlO S

i

(32)

The magnitudes of the sensitivity coefficients in equation (32) indicate

the extreme sensitivity of the capture trajectory to errors in initial

conditions. A sample calculation illustrates _his point. Consider a

situation where the vehicle is at the influence sphere (Sr o = 0)_ but

the velocity components are in error by 8Uo = i meter per second and

5_o = -10-9 radian per second. This corresponds to the initial velocity

vector having an error of about i meter per second in magnitude and i

milliradian in direction. Assume also that 8m o = O. From equation (32),

the final variables will be in error by

5uf = -24.2 - 997 = -991 m/sec

5col = -2.02Xi0 -4 - 2.01XIO -4 = -4.05><10 -4 radian/sec

5rf = 5.73Xi0 S + 5.77><10 S = 1.15×106 m = llSO km

These errors represent a significant perturbation of the trajectory.

Evaluation of equations (27) to (30) shows the eccentricity to be about

O.S and the perigee to be well within the Martian surface. Actually_

the errors are large enough to invalidate the linear perturbation approach.

An interesting result may be found fram the matrix A(to) if in

any given column the element of the second row is divided by the element
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of bhe third row. These ratios arc very nearly the sm:Le_ about

-S.S×I0 -]0. Uithin the validity of the first-order approximation, this

result means !ha; %_f is not independent of _rf; that is_ no matter

_ n : !.O _what. ss;_._f i_itis£ errors _L_..... _b a given 8rf_ _-f -3.SXlO -10 _rf.

This co_m:on ratio is not mnique to the time %o : O, since an examination

of i:he matrix A(t) shows &pproximately the same result over a large

_,or!,ion ef %ha t r_j_sbory.

A further result is that the quantity 2_f/rf is equal to

<,.S4XIO-IO; titus, 6cmi, _ -(2d_f/rf)_rf. This result is not explained in a

rigorous mar_:er; however, a relation of this form and order of magnitude

may be deduced from the following argument. If the errors Suf_ _f_

am l Srf are quite small_ the final perturbed orbit is very nearly

c i r c_..Llar q "• . znce for a circuffar orbit

L_f --

\')I

the relation between buff and 6rf required to maintain a circular

orbi_ of slightly different size is

6<0f = - _ rf

Th_ ES-percent discrepancy in the coefficient _rf may be ascribed to

the facb that the final perturbed orbit is not exactly circular.

Thrust-vector variations. - The sensitivities of final-velocity

and -radial-position components to variations in thrust magnitude and

direction are given by _he weighting functions, which are plotted in

fi_mre ll. As in the case of the escape-spiral phase, the functions

exhibit an oscillatory characteristic, the envelope of which is shown.

Th_ major qualitative result to be gained from figure Ii is one that

may have been anticipated: the maximum sensitivity to thrust errors

occurs in the vicinity of t o when the vehicle is far from the planet

and moving asymptotically_ and the sensitivity decreases to a negligible

mnount as the final satellite orbit is approached. The guidance impli-

cations are clearly _nderstood. Trajectory perturbations due to initial-

condition errors are most efficiently corrected early in the capture

phase, provided, of course, that accurate guidance infomnation is

available to the vehicle at such large distances from the target planet.
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A qua_titative measure of the sensitivity to thrust variations is

provided by the time integrals of the weighting functions:

t] b uf I

...._ij d = 6_f

6rf

6F _l_

-u. OSxIO S

-6. lbXlO-2

-3.4aP<lO S

-7.65XlO -2

1 • 7SX]_O 'c} 2.23X108

(55)

A simple calculation shows that a significa1_t perturbatio_ of the final

satellite orbit results from thrust errors as sma]l as 0.] percent Jn

magnitude and i mill£radiau in dJrect_o_. For %F = 2.3_X_0-3_ the

final-velocity and -position errors are -80.9 me.ers per second,

-1.43Xi0 -4 ra&ian per second_ and ,].0bXl0 b mcters_ respectively. For

_S = i0 -3, the final errors are -3,!d mebers per second, -0.783Xi0 -d- ra-

dian per second, a_d g.ZSX!0 S meters_ respectively. In the last case

the eccentricity of the perturbei orbit is about 0.i, and the perigee

altitude has been decreased from thu _omi_!_t :i2,.to $90 kilometers.

For reasons previously discussed, the second-order effects of

thrust-angle variations ratty be approximated by the product of $_,2 _ind

the integrals of Wil si,'en in thu first, col_mr.n of equation (3S).

Since the integrals of Wil are of smaller m_gnitude thar_ the integrals

of wi2 _ the second oraer effects are negligible for _ q 0.i radian.

Note from equation (33) that the ratios of the elements taken from

the second and third rows are both equal to -3.51><10 -I0. Thus_ from the

ar_m_nents of the previous section 5_f _ -(2o_f/rf)$rf for any small

values of constant bF and _.

Ex_nples of Simple Guidance

Escape guidance in one variable. - The basic result of the sensitiv-

ity analysis of the escape-spiral trajectory is that a very small pertur-

bation in thrust magnitude is sufficient to rotate the asymptotic escape

direction through a large angle. Specifically, if a 0.1-percent sys_,t_m-

atic error exists and no corrective maneuver is made_ the escape

as_nptote will lie on the su_'s side of the Eurth's orbit and will be

directed opposite to Earth's orbital velocity. This condition is

equivalent to a 2S-percent loss in heliocentric ener_oy, which _,_ould most

likely result in a mission failure. The objective of escape guidance

is to preve_t such a co_dition from occurring.
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As an example, consider a simple guidance schemethat employs
constant thrust AF as the control variable and a single-variable guid-
ance criterion, namely, to null _f. A constant-thrust-magnitude error
(unknownto the vehicle) of 0.i percent is arbitrarily assumedas the
uncontrolled perturbing function, and repetitive corrective action is to
be _aken at 20-day intervals based on perfect trajectory determination.
The calculation is simplified by restricting the control interval At
to within i day, where the thrust weighting functions are essentially
constant over this interval. The details of the thrust-control system
are left unspecified, and results are given in the form of thrust
impulse AFAt measuredin newton-seconds. Depending on the control
required, then, consideration maybe given to the possibilities of throt-
tling the low-thrust engine, shutting it off completely, or using a
medium-thrust chemical rocket.

The guidance equation involving angular position only maybe ex-
tracted from equation (6). At the beginning of any control interval
tn the final-angular-position error predicted from measurementsis
deno0edas 8_f(tn). The result of equation (21) is substituted for
the integrand term in equation (6); hence, the guidance equation maybe
written as

_f(t n + Atn) = Aq_f(tn) + ftn+£t n
jt n w41Z_Fn dt

= Z_pf(tn) + w41(tn)Z_Fn At n

Since _f(t n + Atn) = 0 is desired, the control thrust impulse is

Z_Pf(t n)
AF n At n =

w41 (tn )

If corrective action were taken at the previous control instant tn_ I to

null Z_pf, Z_f(tn) is due to the perturbing function SF acting over

the interval (tn_l, in). For the purpose of the calculation herein_

_F w41 dt

AFn Atn = w41 (tn)

Figure 12(a) illustrates the results of this simple-final-value

guidance scheme. A constant-thrust perturbation _F = 2.32XI0-3 newton

(0.i percent) and five control intervals at 20, 40, 60, 80, and i00 days
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are assumed. The uncorrected Zkpf characteristic is shownfor compar-
ison. Although the last corrective action was taken at i00 days, the
angular-position error increases to an acceptable final value of less
than I ° during the interval i00 to 139 days. Since a positive pertur-
bation was assumed_the control impulse must be negative to makeup for
the lag in angular position. This impulse increases in magnitude
slightly with each successive correction from 5.0_<i03 to S.3_<I03 newton-
seconds. Consider the correction at t = 20 days. If the low-thrust
engine is shut off completely (ZXF= -2.32), the shutoff time At is
2.18XI03 seconds, or about 0.6 hour. If the engine is throttled down
by 5 percent, the control interval is about 12 hours.

The effect of the guidance maneuverson the uncontrolled final
variables _uf, 5_f, and Srf is shownin figures 12(b) to (d). Control
stability results in each case_ and a comparison with the uncorrected
characteristics shows a significant reduction in the final errors.

Midcourse guidance in two variables. - As a second example of how

the fundamental guidance equation may be used to prescribe corrective

maneuvers, guidance action taken during the nominal coast period of the

heliocentric-transfer phase is considered. The coast period begins

27.7 days after heliocentric injection_ and this time instant is denoted

tc. If the powered period is extended over the interval (tc, tc + At),

where At is arbitrary but less than several days, and if the thrust-

angle correction _ is constant during this interval_ any two of the

final-velocity and -position error components may be hulled. The

position errors were chosen to be nulled.

The guidance equations involving position errors only are taken

from equation (6) and are written as

_rf(t c + _t) = Srf(tc) + f tc+At dt

jt c f3

$_f(t c + At) = bmf(tc) +

where Srf(tc) and b_f(tc) are the final-position errors predicted at

time t c from navigational measurements_ and the integrands f3 and

f4 are given by equation (20). For the purpose of calculation, the

integrands may be approximated by dropping the terms _is/c_ since



_'estults have sho'_.,nLthem ,::,obc quite sinai2 in compu_risonwTLh the other
• { + At -- 5(pf(t,-. + At) -- 0 ['.'_ R:',:Tre,_,..r_:s. The:rcfore_ s_nec Szf, t c _ .

a;:d ,_.... is small,

5rf(_c) + '_ Atf"Si(_c)c°s AB + "_SS(tc) ]*des ' F sin Ap : 0

Srtd

t _FJ

Thu solutions for A@, and At, are

isan A_ :
,..,s2

F b%'(tc

- '%z(tc)e<ff(tc)

•,, t_rf(tc.)

= 0

At=
-srr(t c)

f'- + ' zN_ +F,ies '..,1( cJ' ,. 'cos F sin A

,./here the quadrant of SIi J.s chosen such (:hat _., J.s positive. The

effect of the r,orrectJ."¢e mancu.ver om the f_nal-veiocity errors may be

&c t emni_ue(t from

_ouf(t_ + At.) : 6uf(t c) + Fde s At

ba)f(t, c + At,) = 6a)f(i:c) + Fdc s At

,," (%)12
Jll(tc)cos A_ + ' F

J21(tc)c°s _'@ + F

sin A

sin A_

As a num_eric_R cx_nple_ asst__e the final errors :letermined at time

,tc to be due to the residual escape-_klidance errors and to a constant

O._!-percent-thrust-magnitude perturbation 5F aching over the interval

to = 0 to L_c : 27.7 days. The final-escape errors from the previous

sect,ion are 8ransformed to initial hei_ocentric errors with the use of

equations (B6)_ (BT)_ (BI2), and (BI4). Then_ from the results of the

he!iocerLtric-traj ectory-sor_sitivity an_Gysis

8uf(tc) = 0.840 m/see

_caf(t c) : -l.SSXlO -I0 radian/sec
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6rf(tc) = 2.08Xi08 m

8_f(tc) = -5.95XI0 -_ radian

The midcourse corrective maneuver requires that

Z_3= 3.91 radians _ 224°

At = 5.66XI0_ sec _ 0.656 day

The actual thrust direction is found by adding _8 to the reference
thrust direction at t c (see fig. 7(a)); hence,

= 0.850 + 5.91 = 4.76 radians _ 273°

The massloss due to the corrective mameuveris

Am= £At

= (-5.6s  g/day)(O.G56 day)

= -3.73 kg

The final-velocity errors after the correction become

6uf(t c + At) = 9.83 m/sec

$c0f(t c + At) = 2.25×i0 -ll radian/sec

CONCLUDING REMARKS

A typical low-thrust Mars orbiter mission using the Snap-8 power-

generating system is studied from a guidance viewpoint. The mission

trajectory is divided into the three characteristic phases_ namely, the

outward escape spiral_ the heliocentric transfer_ and the inward capture

spiral. For each trajectory phase_ the sensitivity of the final trajec-

tory state (velocity, position, and mass) due to errors in the initial

trajectory state and bo thrust-vector errors is determined. This infor-

mation is expressed by the fundamental guidance equation_ the derivation

and solution of which is based on linear perturbation theory and the

method of adjoint functions. In addition to providing a means of inves-

tigating the pertttrbative effect due to a number of error sources_ which

is the major objective of this report_ the guidance equation may also

be used to determine requirements for corrective guidance.

The escape-spiral trajectory is designed so that the hyperbolic

escape asymptote is pointed in a prescribed direction relative to the



5O

Earth-sun line. In other words, the last spiral turn must be oriented
properly. Since the vehicle makesseveral hundred revolutions about the
Earth in the process of escaping, it might be expected that the escape
direction would be highly sensitive to errors. This expectation is amply
verified by the results of the sensitivity analysis. For example, a O.l-
percent error in either the initial-orbital altitude or the initial mass,
if left uncorrected, is sufficient to reverse the direction of escape.
A minimumerror of 0.i percent in the thrust magnitude acting over the
entire trajectory will also result in a 180° misorientation. The effects
of thrust-angle errors during the escape phase are found to be nonlinear
for errors larger than a fraction of i °, so that second-order terms are
required. Results show, for example, that thrust-angle errors of 1/2°
and 2.8° acting over the entire trajectory cause the escape direction
to be in error by about i0 ° and 180°_ respectively. Becauseof the
small control errors involved, specifically the thrust-magnitude error,
the vehicle must have the capability of corrective-guidance programming.

The sensitivity analysis of the heliocentric transfer phase shows
that the nature and magnitude of trajectory perturbations are not unlike
those for free-fall trajectories. The exception, of course, is that an
error in the vehicle's masswill perturb the low-thrust trajectory. An
error of i0 kilograms at the initial-trajectory state results in a final-
position error of several hundred thousand kilometers. Either a 1/2°
error in the escape direction, a 1-percent error im thrust magnitude, or
a 1/2° error in thrust angle, will result in final position and velocity
errors of the order of several hundred thousand kilometers and i0 meters
per second, respectively. These errors are of sufficient magnitude to
require midcourse corrective maneuvers.

The capture spiral_ like the escape spiral, is highly sensitive to
errors both in the initial trajectory state and in thrust-vector control.
These two phases of the mission are essentially duals of each other. In
the escape phase, the final velocity and radial position are not too sen-
sitive to guidance errors. The important parameter is the final angular
position, which is strongly related to the escape direction. In the cap-
ture phase, however, the final angular position is of little consequence
comparedwith the size of the final satellite orbit. Hence, the final
velocity and radial position are the important parameters_ and results
have shownthese to be very sensitive. For example, if the initial-
velocity magnitude and direction were in error by only i meter per second
and i milliradian, respectively, and if the reference thrust program
were followed exactly, the vehicle would spiral down into the Martian
surface instead of establishing the nominal 927-kilometer circular orbit.
A constant-thrust-angle error of only i milliradian acts to decrease
the final perigee altitude by about _00 kilometers.

In summary,the results of this analysis indicate that the low-
thrust brajectory is extremely sensitive to relatively small error
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magnitudes. It should not be concluded_ however_ that accurate guidance
is unachievable. As the trajectory is affected by error perturbations,
it is likewise affected by controlled perturbations, that is, by correc-
hive thrust programming. The proper conclusion to be drawn from this
study is that the electrically propelled space vehicle incurs the job
of repetitive trajectory determination and corrective guidance maneuvers.

Lewis Research Center
National Aeronautics and SpaceAdministration

Cleveland, Ohio, July 16, 1962
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PERTUPSATIONANALYSIS

The motion of the vehicle during each phase of the mission is de-
scribed by a set of nonlinear differential equations. Consider that a

solution of such a set corresponding to a specified thrust program and

satisfying prescribed boundary conditions has been obtained and is

termed the reference solution. If the major assumption is made that

ex_raneous perturbations (e.g._ guidance errors) are sufficiently small

so that the actual vehicle trajectory does not vary significantly from

the reference trajectory_ it is possible to study these variations and

the required corrective maneuvers by linear perturbation techniques.

The pert_rbed differential equations of motion represent a linear system

with time-vatTing coefficic_:_s; which are expressed as known f_inctions

of position, velocity_ thrust and gravity forces_ and mass along Lhe

r_fcrcnc_ trajectory.

The following analysis shows the derivation of the linearized

system equations and the use of adjoint methods in obtaining the varia-

tional solu_ion and expressing the fundamental guidance equation. In

_he following discussion_ the sy_rbol b is used to represent small

variations from reference quantities_ and matrix notation is used for

th<_ purpose of compactness and _ase in algebraic manipulation.

System Equations

During each phase of the mission_ the vehicle is assumed to travel

in a vacuum under the influence of an inverse-square central gravita-
tional field in addition to its own thrust acceleration. A two-

dimensional geometry is used_ and the vehicle motion is described in a

rotating polar coordinate system centered at the appropriate central

body. With reference to figure i_ the differential equations of motion

to be satisfied along the flight path are given as

: r_ 2 _ GM + _ sin _ (i)
r2 m

_ -2um + F-- cos (2)
r r_l

: u (5)

: - (5)
c
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Differentiation with respect to the independent variable time is denoted

by a superscribed dot. The state variables of interest are radial

velocity u, angular velocity (0_ radial oosition r, angular position

q0, and mass m. The propulsion or control variables are the thrust

magnitude F_ and the thrust an6le _ _,,hich is measured with respect

to the loca£ horizontal (circumferential) direction. The effective jet

velocity c is equal to _he product of specific impulse and a conversion

factor_ and is considered constant herein.

At _his point_ it is convenient to define the following " -_- O.L t_Zl!]

matrices or vectors:

X =

Xl

x 2

x3

X d

X<

-]
u

-- rl;y=

_:]
and to write equations (I) to (S) as

(m)

ii = gi(_i, -, %, Yl, yz) i : l, ., _ (A2)

The perturbed system of equations is obtained by taking the first-order

variations of (A2)

S 2

si i : ? _xj byj
J

j:l j,=!

i: i_ ., S

(A3)

which is_ in matrix notation_

where A and B are (S by S) and (S by 2) coefficient matrices, respec-

tively_ whose ij th elements are given by Sgi/%xj and $gi/_Yj,

respectively} thus_
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A

0

-2c0

r

i

0

0

_2GM2rco _-_- + co 0
\±

r -' 2 0
mr

0 0 0

1 0 0

0 0 0

-F

m2 sin

-F

2 cos
rrn

0

0

0

D

sin _ F cos

m m

cos _ -F sin

rm rm

0 0

0 0

-i
0

c

Note that A and B are time-varying matrices evaluated along the
known reference trajectory.

(AS)

(AS)

Solution by Adjoint Methods

The solution of equation (A4) can best be facilitated by the method

of adjoint functions; as suggested in reference S, by introduction of a

S by i vector of Lagrangian multipliers _i' which satisfies a system

of equations defined to be adjoint to equation (A4):

--aYi+ AcXi= o (A7)dt

where

Filhi=

[xi j
In equation (A7,) A T is the transpose of the matrix A. The desired

relation between equations (A4) and (A7) is obtained by taking the

scalar product of (A4) with hi, the scalar product of (A7) with 6x,

and adding the results:
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It is easily shown, however, that

(s y)

Therefcre

(AS)

Define a 2 by I weighting vector _i:

LWisj

and integrate both sides of equation (A8) between the general time

and the nominal final time tf:

Yi(tf) " 5_(tf) : 7i(t)

(Ag)

tf5_(t) + (_i 5y)dt

Jt
(re_o)

Equation (AlO) expresses a linear function of variations in final

conditions in terms of variations in state variables at any point along

the path and the integrated effect of future thrust variations over the

path. For the purpose of analysis it is desirable to separate the effect

of variations on each quantity individually. This is possible by a

proper interpretation of the boundary conditions on the Lagrangian multi-

pliers. For example, let the variation 5x i be of interest at the final

time tf. If the following boundary conditions at tf are specified,

_ii(tf) : I; _ij(tf) : 0 for j _ i (All)

the adjoint equations (A7) can be integrated backward from tf

numerical values for the multipliers at each time instant t.

tion of interest is then given explicitly from (AI0):

to yield

The varia-
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tf (_i eT)dt
_xi(tf)= Yi(_) • _7(t) + (£12)

If this procedure is followed for i = i_ ., S, the complete solution

for the variations in final-s#ate variables may be expressed in the
magrix form

tf
SS(tf) = a(t)_7(t) + (W_y)dt (re_s)

where the rows of A

wi_ respectively:

and W are made up of the elements of 7, and

Xll h12 hlS-

XSI }'25

_51 h55

wI

; w : .

wS

Wll w12

WSl ws£

7)

Because of the form of equation (7), the elements of A can be inter-

preted as partial derivatives or sensitivity coe/'ficients; thus,

_xi(t f) rl : i, ., 5

_ij (t) 8xj(t) i, ., 5

Now that the general results have been established with the help of

matrix notation, it would be well to write out equations (A7) and (Ag)

in terms of the variables of interest in this study• The set of adjoint

equations is determined from (AT) and (AS):

All = (_)Xis-xis

hi4 : 0

F sin _IiiS : m 2 _il

F r£mC°S_)hi2

(s)

(s)

(_o)

(n)

(I£)
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The weighting functions are found from (Ag) and (A6):

7,i2 his
_il sin _ + _ cos _ - _ (iS)

Wil - m rm c

Y_\ _i2 sin @} (16)wi2 = m il cos _ - -7-

Nonlinear Thrust-Vector Perturbations

The previous results were derived with consideration given only to

first-order variations in the state variables and the thrust vector.

It is possible that relatively large variations in thrust magnitude and

direction will occur in such a way that the deviation between actus£

and reference trajectories still remains small; that is, the lineariza-
tion of state variables is still valid. The integrand in equation (AIS)

must be modified from its linear form to account for this situation.

When exact variations in thrust magnitude and direction (Z_F and

A_) are considered, the right side of equation (AA) becomes

F +AF F
sin (@ + A_) - - sin

m m

(P +_) cos (_ + a_) - _ cos
rm

0

rm

(F + _) + F_
C C

Correspondingly, from the definition of equation (Ag), the integrand

term of equation (AIS) becomes

_il [(F +_) sin (_ + a_) F sin _](_i _J) " fi m

+_i--i2[(_ +m_) cos (_ +a_) - F cos _] - _his [(F +_) - F]
rm c
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Equation (AI3) then becomes

_(tf) = A(t)_(t) +
t_tf

(fi)dt (18)
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APPENDIX B

ERROR TRANSFORNA!I_ON BETWEEN ESCAPE AND

HELIOCENTRIC MISSION PHASES

The relations between final escape errors and initial heliocentric

errors are presented. The Earth-referenced velocity and position com-

ponents at the termination of the escape phase are denoted as Ufl ,

a_fl, rfl , and _fl and the sun-referenced components at the initiation

of the heliocentric phase as u08 , c002, r02 , and _02" 0nly first-

order variations in Ufl' _fl, and rfl are considered; _owever, large

variations in _fl are to be allowed.

Position Errors

The geometric configuration of the Earth-centered reference position

_fl and the actual position 7fl + 8_fl is shown in the following

sketch. The coordinate frame has ir as a unit vector away from the

sun, and l_ as a unit vector in the direction of Earth's orbital

velocity.

sI
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The quantities bI and sI are componentsof the reference-position
vector. Since it has been arbitrarily assumedthat the hyperbolic
escape direc%ion is parallel to i_ the asymptotic displacement of the
escape hyperbola is represented by bI.

so that

The h_liocentric position of the vehicle at time tfl is

_To2= _Tfl--(_oa)% + (_oP_°o_)_o

The components of _r02 _ which may easily be found from the sketch, are

given by

b I

5_'o2: _ [_rl(_OS_fl - i) + oo__fl_f_] - _isin_rl (_irfl

sI

L[rfl(COS Spf I - i) + cos Spfl_rfl ] + b I sinr02_02 = rfI mPfl
_j

where

ir 5_ofl

approximated by

(B2

{rfi_fl_ (as

h = _<_\v_l/ (B4_)

tO2 _ rE + b I (BS)

is very small (t_f I -_gfl), equations (BI) and (BZ) are

6r02 = _rfl - (Sl)%q)fl (B6)

rO2_q)O8 : 6rfl + (bl)%qOfl (ST)
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Positive _fl is measured countercloc_._ise_ so _fl is a negative

aR_le, as indicated by the sketch.

Velocity Errors

The heliocentric velocity of the vehicle at time tfl is

V02 : VE + Vfl

so that

where

(r02<008) = r02_<o02 + COoRZro_

The magnitude of b_fl may be found as follows:

: + <rfl<fl)2

: + \vfl I_Vfl kVfl) _i'l k_ -1 _%'1 +

SVfl : _Ufl + (bl)_fl + _rfl
\ rfl /

(Bs)

The angle between the velocity vector and the Earth-centered local

horizontal is denoted by y in the sketch. The variation in this angle

may be expressed in terms or sUfl_ _fl, and Srfl as follows:

Ufl
tan y -

rfl_fl
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since

COSy =
r fl_fl
Vfl

ar --_ v2 / aUfl - a_m - arm (Bg)

Now_ the directional variation between _fl and _fl + 5_fl

due to aT and in part due to Z_pfI. Specifically_ the angle between

the latter vector and __ is aT - Z_pfI measured counterclockwise

positive frown _fl + 5Vfl" Now the heliocentric components of 5Vfl

may be expressed as

is in part

5u02 = (Vfl + 5Vfl)sin(ST - Z_pfl)

5(ro2%2) = (Vfl+ avfl)oos(ar-_fl ) - vn

Since 5Vfl << Vfl and aT is very small, the following approximations

are valid:

au02 = Vfla Y cos zh@f1 - Vfl sin £xpf1

5(ro2ab2) = Vfl(COS z_f I - i) + 5Vfl cos 2_f I + Vfl5 Y sin zkpf1

With the use of equations (BS), (B4), (B8), and (Bg), the previous

expressions become

au02 = aufl - (sl)5cofl - _j arfl cos £xpfI - Vfl sin ZXpf1

(BlO)

l-l- (sI cos z_pfI + b I sin 2@f!)aUfl
a (r02c002) = rfl

+ (bI cos 2_f I - sI sin 2_fl)aa_fl

+ _°f--_l(bI cos £_Ofl - sI sin 2_Ofl)Srfl + Vfl(COS _fl - i)
rfl

(Bll)
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rf 2_f I is very small 2_fl _ _q_fl, equations (BI0) and (BII)

become

(r02_02) = BVfl (BI3)

The variation _02 is found from (B6) and (BS)

6_02 = bUfl - _mfl

b 1

+ rflr02 (c°02 -_fl)Srfl _r-_-J b_fl
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